Is there a way to use reflective padding in Keras or a way to integrate TensorFlow reflect pad method? I tried to use the code from this post: Reflection padding Conv2D
and the error I get is: TypeError: Tensor objects are only iterable when eager execution is enabled. To iterate over this tensor use tf.map_fn.
My code:
def conv_layer(x, channels,kernel_size,dilation_rate, name="conv"):
"""A single convolutional layer."""
conv = layers.Conv2D(channels, kernel_size,
padding='valid', # should be 'same' but using 'valid' for testing purposes'
dilation_rate=dilation_rate,
kernel_regularizer=regul(),
kernel_initializer='RandomNormal',
bias_initializer=get_bias_init(),
name=name)
x = ReflectionPadding2D(x)
#y=layers.Dropout(0.3)(x)
y = prelu(conv(x), name=name)
y=layers.BatchNormalization(name=name+'_b_norm')(y)
concat=concat_layer(x,y,name=name+'/concat')
return concat
Aucun commentaire:
Enregistrer un commentaire